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ABSTRACT 

The paper describes an algorithm that was developed for estimating reliable and accurate average roadway 
link travel times using Automatic Vehicle Identification (AVI) data.  The algorithm presented is unique in 
two aspects.  First, it is designed to handle both steady state (mean constant) and transient (varying mean) 
traffic conditions.  In particular, the algorithm is able to track not only travel time fluctuations that are caused 
by recurring congestion, but also sudden changes in roadway travel times that may result from incident or 
other non-recurring events.  Second, the algorithm can be successfully applied on segments with low levels 
of AVI penetration (less than 1 percent).  The algorithm estimates link travel times using a robust data-
filtering procedure that identifies valid observations within a sampling interval using a dynamically varying 
data validity window.  The size of the data validity window varies as a function of the number of 
observations within the current sampling interval, the number of observations in the previous interval, the 
number of consecutive observations outside the current validity window limits, and the travel times 
experienced by consecutive vehicles.  Application of the algorithm to two datasets of observed travel times 
from the San Antonio AVI system demonstrates the validity of the proposed algorithm, and in particular, its 
ability to track typical and sudden travel time changes in presence of low sampling rates.   

1. INTRODUCTION 

In recent years, there has been a growing interest in utilizing Automatic Vehicle Identification (AVI) data for 
the provision of real-time travel time information to motorists within Advanced Traveler Information 
Systems (ATIS). Examples of such use include the TranStar system in Houston (1), the TransGuide system 
in San Antonio (2), and the Transmit system in the New York/New Jersey metropolitan area (3).  These three 
systems estimate link travel times by monitoring at specific locations the passage times of vehicles equipped 
with electronic tags.  In both TranStar and Transmit, commuters equipped with the “EZ-Tag” automatic toll 
collection system are used as the main source of vehicle probes.  In TransGuide, however, travel time 
information is obtained by monitoring vehicles that were voluntarily equipped with electronic transponder 
tags for research purposes.  In all cases, vehicle movements are monitored using tag readers that are typically 
installed 1 to 5 miles apart along freeway, and occasionally arterial, segments. 

While AVI systems may provide valuable information about travel times between successive 
monitoring stations, the data that are gathered by these systems typically require filtering prior to their use in 
ATIS or other applications. Specifically, filtering is required to remove observations that are not 
representative of typical link travel times, like for example outlier observations that include travel times from 
vehicles that make a stop or a detour while traveling between two detection stations. Obviously, if these 
travel times are not removed, errors may then be incurred when estimating average link travel times, 
especially if excessively long travel times are included in the estimations. 

Another potential problem that was observed with the TransGuide system is the duplication of 
recordings. In this case, duplication occurs when the communication system repeatedly sends data records to 
the Traffic Management Center (TMC).  The system is designed to retry communicating with the TMC each 
time a communication attempt fails.  In some cases, however, a successful initial transmission may have 
occurred but the return message indicating the success may not have been received by the data reader in the 
field.  Thinking that an unsuccessful transmission took place, the system thus initiates a second transmission, 
causing a duplicate of the transmitted records to be created. Of particular concern in this case is not only the 
fact that duplicate records are created, but the fact that duplicates do not always show the same detection 
times for the same vehicle.   

This paper addresses the problem of obtaining reliable travel time estimates from AVI data by 
presenting a robust data-filtering algorithm. The paper starts with a description of the filtering algorithms 
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that are used by existing AVI systems. These algorithms are then evaluated through a theoretical discussion 
and an application to observed freeway travel times from the San Antonio AVI system. Problems with the 
state-of-the-art algorithms are discussed and a new algorithm is presented that has been developed to filter 
AVI travel time observations in both steady state and transient traffic conditions. A more extended 
evaluation of the proposed algorithms is then performed on two series of observed travel times from the San 
Antonio network. The main conclusions of the evaluations and some recommendations for future work are 
finally presented. 

2. EXISTING AVI TRAVEL TIME ALGORITHMS 

As of 2002, the TransGuide, TranStar and Transmit systems were the only operational AVI systems in the 
United States to be used for the collection of link travel time information. All these systems were 
designed and deployed in the second half of the 1990s.  This section describes the data filtering 
algorithms that are used by each one of them.  The following section will then provide a critical 
evaluation of these systems. 

2.1. TransGuide Algorithm 

Within the TransGuide system, link travel times between successive AVI readers are estimated using a 
rolling average algorithm that automatically filters out all recorded travel times that exceed a user-defined 
threshold link travel time. This algorithm, which was developed by the Southwest Research Institute (SwRI), 
is defined by Equations 1 and 2, where Equation 1 defines the set of valid recorded travel times that is used 
at each evaluation time to estimate the current average travel time between two AVI readers (2). 
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where:  
SttAB t = Set of valid recorded travel times from reader A to reader B at time t 
tAi  = Detection of vehicle i  at reader A (seconds), 
tBi  = Detection time of vehicle i  at reader B (seconds), 
t  = Time at which travel time estimation takes place (seconds), 
tw  = Rolling average window (seconds), 
lth = Link threshold travel time parameter (varies between 0 and 1), 
ttAB t  = Average travel time from reader A to reader B that is estimated at time t (seconds), and 
tt’AB t = Previously estimated average travel time from reader A to reader B (seconds). 

The main operating parameters of the algorithm are the rolling-average window tw and the link 
threshold travel time lth. The rolling-average window determines the period of time that should be considered 
when estimating the current average travel time. For instance, if a 60-second window is specified, then only 
the travel times from the vehicles that were observed to pass reader B in the past 60 seconds are considered 
in calculating the current average travel time between readers A and B. On the other hand, the link threshold 
parameter is used to remove from consideration travel times from individual vehicles that may not be 
representative of average traffic conditions. If the link threshold is set at 0.20, then any estimated individual 
vehicle travel times from reader A to reader B that differ by more than 20% from the previously estimated 
rolling average travel time will not be included in the calculation of the new average. 
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The literature about TransGuide does not specify the size of the rolling average window tw that is 
used to filter the data but seems to indicate that a 0.20 link threshold is a common practice. The information 
also indicates that updates of the average travel time are done at periodic intervals, and not necessarily each 
time a new travel time between two readers is obtained. It can be assumed that the interval between the 
updates is linked to the size of the rolling average window. 

2.2. TranStar Algorithm 

The TranStar algorithm is similar to the TransGuide algorithm. This algorithm, which was also developed by 
the Southwest Research Institute (SwRI), uses the filtered data set defined by Equation 1 and the arithmetic 
average of Equation 2 to calculate current average link travel times between successive AVI stations. The 
main difference with TransGuide is that travel times are updated each time new a new travel time 
information is obtained from a detected vehicle instead of being done at fixed time increments (4). 

Similar to TransGuide, the TranStar filtering algorithm uses a link threshold parameter of 0.20. The 
algorithm further uses a rolling average window of only 30 seconds. This means that any recorded travel 
time between a pair of AVI stations will be considered invalid and rejected from the statistical analysis if it is 
greater or lower by 20% than the current estimated average travel time based on observations made in the 
previous 30 seconds. 

2.3. Transmit Algorithm 

Travel time estimation within Transmit is relatively similar to the preceding systems. However, instead of 
using a rolling average to obtain estimates of current travel times between AVI stations, average travel times 
are estimated using fixed 15-minute observation intervals. For each interval, the system collects a sample of 
up to 200 individual link travel times.  This sample is then used to estimate an average travel time for the 
interval using Equation 3 (3). 
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where:  
ttAB k  = Average link travel time from readers A and to reader B in kth 15-minute interval (seconds), 
tAi  = Detection time of vehicle i  at reader A (seconds), 
tBi  = Detection time of vehicle i  at reader B (seconds), and 
nk  = Number of observed travel times in kth 15-minute interval. 

After estimation of the average travel time for the current interval, Equation 4 is used to smooth the 
estimate against historical data from the same interval in the previous week or weekend day, depending on 
the case, to obtain an updated historical average travel time. This smoothing process is currently set using a 
robust exponential smoothing algorithm. The algorithm is robust because it uses a smoothing factor of 10 
percent when no incident is detected and a smoothing factor of 0.0 percent when an incident is reported. This 
form of smoothing ensures that incident data are not included in the moving average, and thus that the 
historical database only includes typical non-recurring congested conditions. 

( ) ( ) 1k -1 −′′⋅+⋅=′′ kABkABAB htttthhtt αα  [4] 

where:  
ttAB k = Estimated average link travel time from reader A to reader B for kth 15-minute interval 

(seconds), 



Dion and Rakha  4 

 

tthAB k = Historical smoothed travel time for kth 15-minute interval (seconds), 
tth”AB k = Updated historical smoothed travel time for kth 15-minute interval (seconds), and 
α  = User-specified smoothing parameter, currently set at 0.1. 

Within Transmit, incidents are reported either manually or through an automatic detection algorithm 
that was developed by PB Farradyne Inc. This algorithm is based on the observation that link travel times 
tend to be normally distributed under free-flowing non-incident traffic conditions. When a number of 
vehicles fail to arrive at a monitoring station within expected travel times, the algorithm increases the 
probability of the presence of an incident on the link upstream of the monitoring station and decreases the 
probability of a false alarm. Once the confidence level of a possible incident is reached the occurrence of an 
incident increases to its user-defined threshold, an alarm is then set off at the central computer. 

3. EVALUATION OF EXISTING AVI FILTERING ALGORITHMS 

The main difference between the Transmit and TransGuide/TranStar algorithms is how observed travel times 
are filtered to produce reliable average travel times. In the TransGuide/TranStar algorithms, assumed invalid 
travel times are removed from the set of observed travel times before calculating average travel times. In the 
Transmit algorithm, invalid data are not removed from the set of observed travel times, but are smoothed out 
with historical average travel times. In this case, the smoothing process combines 10% of the newly 
estimated average with 90% of the observed historical average for the corresponding evaluation interval.   

Another important difference relates to the ability of each system to reflect short-term fluctuations in 
traffic conditions. In the Transmit algorithm, the response to changes depends on the weights assigned with 
the newly and historical travel time averages in the data smoothing process. With weightings currently 
merging 10% of each newly estimated average travel time with 90% of the corresponding historical average, 
this system only slowly adjusts to observed changes in traffic conditions from one day to the next. This 
indicates a design choice of reporting reliable long-term average travel times instead of current travel times. 
While knowledge of typical average travel times on freeway and/or arterial links is helpful for motorists to 
plan their commute or shopping routes, this information will not reflect congestion due to non-recurring 
conditions and cannot therefore be used for real-time, dynamic traffic assignment functions.  Contrary to 
Transmit, the TranStar/TransGuide systems emphasize on reporting current travel times.  Implicit in the 
design of these system is the desire to allow motorists to alter their travel plans in response to both recurring 
and non-recurring congestion.  In this case, the ability to react to changes in traffic conditions greatly 
depends on the values assigned to the rolling-average window and link threshold parameters. For instance, 
with a 30-second rolling average window and a 20% link threshold, TranStar is able to track changes in 
average travel time that do not cause the average travel time to change by more than 20% every 30 second.  
TansGuide, on the other hand, is able to track changes in traffic conditions that do not cause average travel 
times to change by more than 20% over a 2-minute interval. 

While both the TransGuide and TranStar algorithms were developed to follow short-term changes in 
link travel times and are generally similar, there are differences in their ability to effectively track changes in 
travel times in their respective networks. As an example, Figure 1 illustrates an application of the 
TransGuide algorithm to a dataset of weekday freeway travel times from the San Antonio AVI system. The 
figure was generated using the TransGuide’s typical settings, which consist of a 2-minute rolling average 
window and a 20% link travel time threshold. As can be observed, the algorithm is unable in this case to 
track all the changes in traffic conditions, particularly the sudden onset of congestion during the morning 
peak. However, according to TranStar officials (4), there appears to be no problem in the ability of the 
TranStar system to correctly track changes in traffic conditions in Houston despite the use of a similar 20% 
link travel time threshold with a shorter 30-second sampling window. 
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The main reason for the observed performance difference between the TransGuide and TranStar 
systems is linked to the rate of AVI equipment penetration within each network.  Typically, higher 
penetration rates translates into higher sampling travel time sampling rates.  In turn, these higher sampling 
rates allow a system to better track changes in travel times, identify outlying observations, and increase 
confidence in the assumption that the observed travel times are truly representative of exiting traffic 
conditions.  For TranStar, the main source of travel time information is from the 150,000 commuters that are 
using the EZ-Tag automatic toll collection system (5). In contrast, TransGuide relies on 38,000 commuters 
that volunteered to have a transponder tag installed on their vehicle (6).  In both cases, a significant number 
of tags from out-of-town drivers are also detected.  This results in an ability for TranStar to collect travel 
times from about 9% of passing vehicles, while TransGuide can typically monitor only about 1% of 
vehicles.  This translates into an ability for TranStar to collect approximately 7 valid travel times per minute 
at each AVI location during peak periods, and 5 readings per minute during off-peak periods (5,7).  In 
contrast, TransGuide can typically only collect one or no travel time per two-minute interval. While there are 
more observations during peak periods, there are still typically only 2 or 3 observations per two-minute 
interval, with rarely more than 5 observations in any interval. With such a low sampling rate, it is thus 
possible that successively observed travel times suddenly jump by more than 20%, especially if several 
minutes elapse between successive readings, causing the algorithm to incorrectly assume that all new 
observations are invalid. 

4. PROPOSED FILTERING ALGORITHM 

Based on the observed operational performance of the TranStar and TransGuide systems, there appears to be 
a need for the development of a data filtering algorithm for an AVI-based travel time system that would be 
capable of tracking variations in observed travel times in the absence of high sampling rates.  The need to 
consider situations with low sampling rates is linked to applicability issues.  For instance, the initial 
deployment of the TransGuide system called for the distribution of 400,000 tags.  Unfortunately, distribution 
never exceeded 38,000, resulting in the problems that were discussed earlier.  In this case, the use of a data 
filtering algorithm capable of handling low sampling rates should improve the usability of the collected data.  
In networks in which AVI equipment are already being used for electronic toll collection purposes, such an 
algorithm may also allow for travel time estimation on links that are not part of the toll road system and that 
may not be traveled by a large number of vehicles equipped with AVI equipment.  Finally, such an 
algorithm may further reduce the required level of market penetration for the installation of an AVI-based 
travel time data collection system, or allow tests of such systems to be conducted with a smaller distribution 
of tags. 

To address the shortcomings of the current algorithms, an enhanced filtering algorithm is developed 
and presented in this paper.  This algorithm determines average travel times between successive AVI readers 
by first ignoring all duplicate records that might be generated by the communication equipment and then by 
applying a series of filters to the collected travel times to remove invalid observations.  As will be explained 
in the following sub-sections, the algorithm considers as invalid any observed travel time that falls outside a 
validity range that is determined based upon the following four factors: 

a) Expected average trip time and trip time variability in current interval, 
b) Number of consecutive intervals without any readings since the last recorded trip time, 
c) Number of consecutive data points that are either above or below the validity range, and 
d) Variability in travel times within an analysis interval. 

Similar to the TransGuide algorithm, the proposed algorithm is designed for real-time estimation of 
roadway travel times using AVI data.  The algorithm is designed to take as input a series of travel time 
detection records indicating a link exit detection time, a link travel time and a vehicle identification number.  
Actual computation time would then depend on the number of records provided as input but should remain 
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extremely short.  In this case, the main constraint on how fast the algorithm can be repeatedly applied will 
depend on the time needed to collect vehicle detection records from the various detection sites and to obtain 
travel time detection records by matching the vehicle detection records from the detection sites that are 
located at both ends of the link under consideration. 

4.1. Removal of Duplicate Records 

Duplicate records of observed travel times between successive AVI readers are removed from the collected 
data sets to avoid introducing bias in the estimation of average link travel times.  In this case, duplicate 
records are assumed to exist when two detection records from a given AVI station exhibit both identical 
vehicle identification number and detection time.   

 As an example, Figure 2 illustrates an excerpt of the travel time records that were used to produce 
Figure 1.  As can be observed, three pairs of records with identical detection times are found to exist within 
the data set.  However, since only two of these pairs exhibit identical vehicle identification numbers, it is 
thus assumed that there exists only two pairs of records with duplicates.  This conclusion is derived from the 
fact that while two or more detection records can be simultaneously created by vehicles traveling on 
different lanes, different vehicle identification numbers would then usually be associated with each record 
since each vehicle is typically assigned a unique number.  This is exactly what is observed with the pair of 
records sharing the record time 21237.  In this case, the recording of different vehicle identification numbers 
is an indication that different vehicles produced the two records, and thus, that the two records are valid.   

However, while truly duplicate records will display identical observed travel times, as is the case for 
the records at time 21889 in Figure 2, this is not always the case.  For example, the two records at time 
23568 list identical vehicle identification numbers and detection times but different estimated travel times.  
This a glitch associated with the TransGuide system.  As explained earlier, the system is instructed to try to 
resend any detection record when it is believed that data transmission from the antenna to the AVI reader, or 
from the AVI reader to the TMC, has failed.  In this case, a second transmission was initiated even though 
the first transmission was successful.  In this case, while the detection time remained the same in the two 
transmissions, a much longer travel time was sent in the second transmission while an unchanged travel time 
should have been sent instead. 

In the above problem, while it is obvious that the two records were generated from the same vehicle 
detection, the question arises as to which record to consider as valid.  In Figure 2, it is evident after 
comparing the set of neighboring records that the record with the 148-second travel time represents the valid 
observation while the record with the 1205-second travel time should be eliminated.  An analysis of various 
AVI datasets from the San Antonio network further indicated that the records with the shortest travel time 
should typically be retained when dealing with TransGuide records sharing the same record time and vehicle 
identification number but not the same observed travel time.  A more general approach applicable to any 
system would be to compare each recorded travel time within a duplicate pair with the average travel time of 
vehicles that were previously detected.  The travel time that is closest to the average would then likely be the 
valid travel time and the one to keep.   

4.2. Expected Interval Average Travel Time and Travel Time Standard Deviation 

Within the filtering algorithm, the expected average travel time and expected standard deviation of travel 
times for a given sampling interval k that is about to begin are computed using an adaptive smoothing 
exponential technique.  Equations 5 and 6 illustrate how these two parameters are calculated.  It should be 
noted at this point that a more detailed description of how the variance is computed is provided later in the 
paper.  As shown in Equations 5, the expected travel time ttsAB for the current interval k is estimated based 
on the average travel time ttAB of all valid observations that were made in the sampling interval that just 
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ended (interval k-1) and the expected average travel time ttsAB for that interval that had been previously 
estimated by the smoothing technique.  Equation 6 further indicates that a similar process is also used to 
estimate the expected standard deviation of travel times in the current interval k. 
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where: 
(ttAB)k = Observed average travel time between readers A and B in the kth sampling interval 

(seconds), 
(ttsAB)k = Expected (smoothed) average travel time between readers A and B in kth sampling 

interval (seconds), 
(σ2

ttAB
)k = Variance of observed travel times relative to observed average travel time in kth sampling 

interval (seconds), 
(σ2

s ttAB
)k = Variance of observed travel times relative to expected mean in kth sampling interval 

(seconds), 
nv k  = Number of valid travel time readings in kth sampling interval, and 
α = Exponential smoothing factor. 

 When initializing the process, the expected travel time for the first sampling can be assumed to 
correspond to the time required by a vehicle to travel the link under consideration at speed limit.  Similarly, 
the expected standard deviation can be determined as a given percentage of the expected travel time.  
Historical data may also be used to provide initial estimates. As travel time observations become available, 
the expected travel time and expected variance will then become a reflection of the observed travel times. 

In both equations, calculations are made using a lognormal distribution.  This distribution has been 
selected to reflect the fact that travel times on a link naturally tends to be skewed towards longer values.  
This skewness is attributable to the fact that motorists will not typically travel at speeds that are excessively 
higher than the speed limit, but will travel at speeds that are much lower than the speed limit as a result of 
traffic congestion.  As an example, consider the data of Figure 1.  In the figure it is first observed that travel 
times during the non-congested portion of the day continuously fluctuate around 2.4 minutes.  This travel 
time corresponds to the time it takes a vehicle to travel the link at the posted speed limit of 60 mph.  With the 
exception of the small surge in travel times around 5:00 p.m., travel time during the off-peak period typically 
fluctuate between 2.0 and 2.9 minutes.  This correspond to travel speed fluctuations between 74 and 50 mph.  
For this dataset, statistical χ2 tests indicates that both a normal and a lognormal distribution could equally 
represent the observed travel times (p = 0.999).  However, when the small surge of longer travel times 
around 5:00 p.m. is considered, statistical χ2 tests then indicate that a lognormal distribution would provide a 
better fit than the normal distribution (p = 0.945 versus p = 0.654).  These results are for instance consistent 
with a previous study by Kang et al. (8), who have found that a normal distribution can be used to model 
travel time fluctuations in the absence of congestion on two-way roads with two lanes, while a lognormal 
distributed would better fit congested flows.   

The exponential smoothing factor α used in both Equations 5 and 6 allows for the dampening of 
short-term fluctuations in observed travel times and travel time variance and a smoother operations of the 
algorithm.  Due to the stochastic nature of traffic flows, significant fluctuations can result in estimated 
interval average travel times and travel time variance from one sampling interval to the next, particularly if 
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the sampling intervals are very short or the sampling rates are low.  In turn, these fluctuations can make it 
difficult for the algorithm to recognize underlying trends of increasing or decreasing travel times and may 
lead to the incorrect acceptance or rejection of travel time observations.  By weighting current average travel 
time and travel time variance estimates with corresponding smoothed estimates from previous intervals, the 
filtering algorithm is made less sensitive to short-term fluctuations and thus more efficient at tracking 
underlying trends. 

As indicated in Equation 7, the value taken by smoothing factor α varies depending on the number 
of observations that are in the sampling interval under consideration and a user-defined parameter (β).  This 
variability in terms of the number of observations is based on the concept that the level of confidence placed 
on estimates of a given sampling interval should be proportional to the number of observations on which the 
estimates are derived.  For instance, a dynamic factor α allows the algorithm to recognize that while the 
availability of two or three travel time observations within a sampling interval provides a means to estimate 
an average travel time and travel time variation, these two estimates are not likely to be as accurate as 
estimates based on, say, 15 or 20 observations. 

kvn  )1(1    βα −−=  [7] 

where: 
α = Exponential smoothing factor,  
β = User-defined sensitivity parameter, and 
nv k  = Number of valid travel time readings in kth sampling interval. 

Figure 3 illustrates the values that are taken by the smoothing factor α  based on the value given to 
the sensitivity parameter β and the number of valid observations in the current sampling interval.  As can be 
observed, values for the smoothing factor α typically vary between 0 and 1.  A value of 0 means that no 
confidence is put on the estimated travel time from the current interval and that no fraction of this estimate 
should be used to update the moving average. The algorithm considers smoothing factors of 0 when no valid 
observations are recorded within an analysis interval.  In this case, the algorithm assigns the moving average 
travel time that was estimated in the previous interval to the current interval.  Alternatively, a value of 1 
means that full confidence should be put on the average travel time that is estimated from the current 
sampling interval and that this estimate should replace, in its entirety, the moving average.  Any value 
between 0 and 1 for the smoothing factor α would finally result in the calculation of an updated moving 
average travel time that would compute a weighted combination of the previously computed moving average 
travel time and the average estimated travel time from the current interval. 

Finally, as indicated in Equation 7, the sensitivity parameter β has not been assigned a fixed value.  
Currently, this parameter must be specified by the user.  This allows calibration of the smoothing process to 
the conditions under consideration. Specifically, the user has the flexibility to allow the smoothing factor to 
respond rapidly or slowly to the number of observations in a recording interval, as illustrated in Figure 3.  
Eventually, the values assigned to this parameters could be linked to estimated traffic parameters to remove 
the need of the user to calibrate it.  However, further research is required in order to determine whether 
typical values of the parameter β can be associated with specific traffic conditions. 

4.3. Travel Time Estimation within Basic Data Validity Range 

Within each sampling interval, the basic data validity window is based on a confidence interval that is 
computed using a user-defined number of standard deviations above and below the expected interval average 
travel time, as defined in Equations 8, 9 and 10.   

( ) ( ){ }  -   and      -   1 kAB maxAiBikAB minkBikkAiBiAB k tttt ttttttttStt ≤≤≤<−= −  [8] 
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where: 
SttAB k = Set of valid recorded travel times from reader A to reader B in kth interval, 
tAi  = Time at which vehicle i was detected at reader A (seconds), 
tBi  = Time at which vehicle i was detected at reader B (seconds), 
tk  = End time of kth interval (seconds), 
(ttAB min) k = Minimum valid travel time between readers A and B in kth interval (seconds), 
(ttAB max) k = Maximum valid travel time between readers A and B in kth interval (seconds), 
(ttsAB) k  = Expected average travel time between readers A and B in kth interval, as defined in 

Equation 5 (seconds), 
(σ2

s ttAB
)k = Expected variance of travel times in kth interval, as defined in Equation 6 (seconds), and 

nσ = Number of standard deviations defining the basic validity range. 

In computing the confidence limits, the average travel time and travel time standard deviation of all 
valid travel time observations within a sampling interval must be known as these two elements are used in 
Equations 5 and 6 to estimate the expected travel time and expected standard deviation of travel times within 
a sampling interval.  In developing the basic data filtering process, Equation 11 is used to estimate the 
average observed travel time between a pair of readers, while Equation 12 is used to estimate the standard 
deviation of observed travel times.   
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where: 
(ttAB)k = Observed average travel time between readers A and B in kth sampling interval (seconds), 
(ttsAB) k  = Expected average travel time between readers A and B in kth interval, as defined in 

Equation 5 (seconds), 
(σ2

ttAB
)k = Variance of observed travel times in kth interval (seconds), 

tAi  = Time at which vehicle i was detected at reader A (seconds), 
tBi  = Time at which vehicle i was detected at reader B (seconds), and 
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nv k  = Number of valid travel time readings in the kth sampling interval. 

In Equation 12, it should be observed that the variance is not calculated against the interval average 
travel time but instead against the interval expected average travel time, as given by Equation 5.  The 
expected interval average time is used in the calculations for prediction purposes.  Since the filtering 
algorithm is intended to be used in real-time applications in which there may be no a priori knowledge of 
future traffic conditions, the success of the algorithm in tracking changes in traffic conditions heavily 
depends on its ability to adjust to such changes.  As illustrated in Figure 4, the use of the observed average 
travel time to calculate the variance within each interval would produce a filtering algorithm that is relatively 
insensitive to changes on traffic conditions.  On the other hand, calculating the variance of travel times based 
on the expected average travel time allows the algorithm to calculate larger variances, and thus larger 
confidence intervals, when travel times deviate from the previously estimated moving average travel time.  
As shown in Figure 5, such a feature allows for a better tracking of changing traffic conditions.  Another 
advantage of using expected average travel times is the ability of the filtering algorithm to calculate travel 
time variances, albeit crude estimates, for intervals with only one valid observation.   

While the number of standard deviations defining the size of the validity window is user definable in 
Equation 9 and 10, it is expected that basic validity ranges encompassing two or three standard deviations 
would typically be utilized.  The use of a search window that is two standard deviations wide would mean 
that all data points within a 95% lognormal confidence interval are to be considered as valid and that all 
other points falling outside this range are to be rejected from consideration when estimating average link 
travel times. Similarly, the use of a validity window that is three standard deviations wide would mean that 
all data points within a 99% confidence interval are to be considered as valid. 

To evaluate the ability of the filtering criterion to follow observed travel time fluctuations within a 
given dataset, Equations 5 through 12 were applied to the dataset of Figure 1 making the following 
assumptions: 

• Travel time information is updated every two minutes, as done within the San Antonio AVI system; 
• A value of 0.2 is used for the sensitivity parameter β in Equation 7, which determines the value of 

weighting factor α with respect to the number of valid observations in the current sampling interval; 
• A value of 2 is assigned to the parameter nσ in Equations 9 and 10, which results in the definition of 

a basic validity range encompassing two standard deviations. 

As can be observed in Figure 6, the application of the filtering criterion defined by Equations 8 
through 12 does not produce good results.  First, the criterion is unable to track the sudden increase in travel 
times that occurs during the morning peak period.  Second, the algorithm application results in a significant 
number of, apparently, valid data points being rejected over the entire day.   

To test the hypothesis that the poor performance of the filtering algorithm was due to a large 
inherent variability in travel times, the filtering criterion was reapplied using a basic search window of three 
standard deviations instead of only two.  As can be observed in Figure 7, the consideration of a larger search 
window greatly reduced the number of data points that are incorrectly assumed to be invalid.  However, 
despite this improvement, it is observed in Figure 7 that the filtering criterion remains unable to follow the 
large fluctuation in observed travel times that occurs between 6:30 and 9:00 A.M.  This failure to track travel 
time fluctuations during the morning peak period is explained by the combination of the rapid nature of the 
change in roadway travel times and the low number of observations within each sampling interval.  Because 
travel times are changing rapidly at the beginning of the morning peak period, a few minutes without travel 
time measurements is sufficient, in this case, to push the average two-minute interval link travel time outside 
the bounds of the user-defined validity window.  Since all subsequent observations lie outside the validity 
window, they are considered invalid and rejected.  Only the reduction of travel times to values within the 



Dion and Rakha  11 

 

validity window, after the end of the peak period, allows the filtering algorithm to accept new observations 
as valid.   

4.4. Expanded Data Validity Range 

To allow the model to be more response to sudden changes in roadway travel times, the filtering algorithm 
was modified to search for trends of increasing or decreasing travel times outside the basic validity window 
defined by Equations 8 through 12.  Specifically, the algorithm was modified to consider as valid the third of 
three consecutive points outside the validity window, as long as all three points are either above or below the 
validity window.  While various alternatives have been considered, the approach of simply looking at how 
many consecutive points lie outside the validity was found to be the best to account for sudden changes in 
traffic behavior that cause significant changes in observed trends.   

Figure 8 illustrates how the expanded search window enhances the performance of the filtering 
algorithm. The figure illustrates the change in the expected interval average travel time, as well as in the 
lower and upper limits of the validity range, after consideration of trends outside the basic validity range. As 
can first be observed, most of the travel times sampled between 6:00 and 6:34 A.M. are considered valid 
since they almost all fall within the validity window limits defined by Equations 9 and 10. The next two data 
points, at 6:38 and 6:49 A.M., are then rejected based on the fact that they lie outside the validity window 
limits. This leads to no changes in the expected interval average travel time and validity range of all the 
sampling intervals between 6:34 and 6:54. The detection of a third consecutive data point above the limits of 
the current validity range in the 6:52-6:54 interval finally indicates that a trend of increasing travel times 
may exist. This results in the inclusion of the 6.6-minute observed travel time in the set of valid 
measurements, and in a subsequent update of the expected average travel time and search window limits for 
the 6:54-6:56 interval. In turn, the inclusion of this data point in the set of valid observations leads to an 
increase in the expected average travel time for the next intervals, and allows the filtering algorithm to 
correctly track the increasing travel times that are observed after time 6:58. 

In order to allow the filtering algorithm to correctly track sudden variations in traffic conditions, 
changes were made to both Equations 7 and 12.  Equation 7, which determines the value taken by the 
smoothing factor (α), is substituted by Equation 13, while Equation 12, which estimates the variance of 
travel times against the expected interval average, is substituted by Equation 14. 
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where: 
α = Exponential smoothing factor, 
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β = User-defined sensitivity parameter, 
(σ2

ttAB
)k = Variance of observed travel times in kth interval (seconds), 

na = Number of consecutive observations above the limits of the validity window, 
nb = Number of consecutive observations below the limits of the validity window, 
nv k   = Number of valid travel time readings in kth sampling interval, 
tAi  = Time at which vehicle i was detected at reader A (seconds), 
tBi  = Time at which vehicle i was detected at reader B (seconds), 
(ttAB) k  = Observed average travel time from reader A to reader B in kth interval (seconds), and 
(ttsAB) k  = Expected average travel time from reader A to reader B in kth interval, as defined in 

Equation 5 (seconds),  

The main difference between Equations 7 and 13 is the addition of a fixed smoothing factor α of 0.5 
that is applied to the estimation of the next interval’s expected average travel time and travel time variance 
each time a third consecutive data point either above or below the basic validity range is introduced.  
Because the arbitrary inclusion of such a data point in the set of valid observations constitutes a break in the 
normal application of the exponential smoothing process defined by Equations 8, 9 and 10, it was 
determined that a constraint should be applied on the weighting factor determined by Equation 7 to ensure 
that the filtering algorithm quickly adjusts to the trends of increasing or decreasing travel times.  The impact 
of this constraint is very apparent in Figure 8.  In the figure, it is observed that the inclusion of the 6.6-
minute observed travel time at 6:53 in the set of valid travel times provides only one valid observation for 
the 6:42-6:54 interval.  If Equation 7 were used, a value of 0.2 would be assigned to the smoothing factor α  
with a sensitivity parameter β of 0.2.  This would have resulted in an updated expected interval travel time of 
179 seconds for the 6:54-6:56 interval, instead of the 242 expected travel time.  By time 7:10, the expected 
interval travel time would have been estimated to be only 388 seconds, instead of 571 seconds, which is 
already lagging behind the true average. 

The main difference between Equations 14 and 12 is again linked to the inclusion of a third 
consecutive data point outside the basic validity range in the set of valid observations.  In this case, a new 
criterion for calculating the variance of travel times within a sampling interval is introduced for use in such 
an application.  However, this criterion is not introduced to increase the sensitivity of the filtering algorithm 
to trends of changing travel times; instead it decreases the filtering algorithm sensitivity.  Since the variance 
of travel times within an interval is calculated against the expected average travel time, large variances are 
typically calculated for intervals containing observations lying outside the basic validity range.  If these large 
variances are used to determine the basic validity range of the next interval, very wide search limits are 
determined.  Such wide limits may then lead to the inclusion of very long, suspicious, travel times within the 
set of valid observations.  This situation is thus prevented by constraining the value calculated for the 
variance. 

To evaluate the impacts of the proposed algorithm enhancements, Equations 8, 9, 10, 11 and 14 
were again applied to the dataset of Figure 1.  To ensure a consistent comparison with previous results, 
identical operating parameters for the filtering algorithm were utilized to produce the results of Figure 7 (2-
minute interval, β=0.2, nσ=3).  As can be observed in Figure 9, the proposed model enhancements improve 
the operation of the algorithm significantly by allowing the algorithm to respond to the sudden change in 
average travel times. 

4.5. Consideration of Low Sampling Rates 

To further improve the filtering algorithm, further enhancements were made to the algorithm. Given the 
stochastic nature of traffic, it was first observed that predicting the expected average trip times during a 
given interval while using data collected in the previous intervals does not ensure that the resulting estimates 
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are truly representative of the interval’s real average trip time. For instance, if traffic demand is slowly 
increasing during a given portion of the day, it can then be expected that the average travel time that is 
measured in consecutive intervals should gradually increase. Second, it was observed that the assumption 
that the expected average trip time and standard deviation of the validity window remain constant during 
intervals with no observations, as defined in Equations 5 and 6, the algorithm may utilize outdated average 
travel times to determine the validity window limits.  

In this case, a period with no recorded travel times does not mean that there is no traffic passing 
through the pair of AVI readers, but simply means that no vehicles equipped with tags are being read. Thus, 
to increase the responsiveness of the algorithm to changes in traffic conditions to situations with low 
sampling rates, Equation 15 was introduced to modify the search window limits by computing the number of 
standard deviations nσ that should be used in Equations 9 and 10 within each sampling interval k based on 
the number of intervals with zero observations.  

Equation 15 provides a model that dynamically adjusts the size of the validity window based on the 
number of preceding sampling intervals without AVI observations.  For any interval for which at least one 
observation was made in the preceding interval, the equation defines a validity window that corresponds to 
the minimum size specified by the user (λ).  If no observations were made in the previous interval, the size 
of the validity window is increased by λ+λ (βσ,).  The size of the search continues to increase with every 
increase in the number of consecutive preceding intervals without observations, until a maximum size of 2λ 
is reached. 

[ ]kon
kn  )1(1  σσ βλλ −−+=  [15] 

where: 
nσ k = Number of standard deviations to consider for basic validity range in kth sampling interval, 
no k = Number of consecutive intervals without observed travel times immediately before kth 

interval, 
λ =  User-defined minimum number of standard deviation to consider, and 
βσ =  User-defined sensitivity parameter for determining number of standard deviations to 

consider. 

Figure 10 illustrates the impact of introducing Equation 15 on the algorithm performance.  For this 
analysis, a different segment is used simply to better illustrate the change in the algorithm.  Since the 
segment used in previous analyses does not exhibit large periods without observations, there would be very 
little visible impacts on the change on the boundary of the validity range.  Figure 10 thus compares for a 
freeway segment with a relatively low sampling rate the results of the application of a version of the filtering 
algorithm that includes only Equation 8, 9, 10, 11 and 14 to a version that also includes Equation 15. As can 
be observed there is a noticeable difference in the size of the data validity window limits used by both 
versions of the filtering algorithm.  While identical search limits are used by both versions of the filtering 
algorithm for all sampling intervals for which travel time observations were made in the preceding interval, 
increasing differences are observed for intervals that are preceded by an increasing number of intervals 
without observations.   

In Figure 10, the impact of the modified filtering algorithm is particularly apparent in the intervals 
between times 16:50 and 17:30.  Within this period, only three travel times are observed: a 2.42-minute 
travel time at 16:51, a 3.35-minute travel time at 17:25, and a 3.18-minute travel time at 17:27.  After 
detection of the first vehicle passage, the minimum and maximum search window limits for the next 
sampling interval, 16:52 to 16:54, are set at 1.94 minutes and 3.15 minutes, respectively, by both versions of 
the algorithm.  As time passes without any additional observations, the filtering algorithm based only on 
Equations 8, 9, 10, 11 and 14 maintains a fixed validity window limit, while the algorithm that also includes 
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Equation 15 gradually alters the size of the validity window to 1.66 minutes and 4.17 minutes by the time the 
17:24-17:26 interval is reached.  This results in the 3.35-minute travel time observation at 17:25 being 
considered as valid by the modified algorithm that includes Equation 15.  A visual analysis of the time series 
of recorded travel times appears to indicate that the 3.35-minute observation should be considered. 

4.6. Consideration of Successive Link Arrival and Departure Times 

Testing of the algorithm on various freeway and arterial link travel time datasets from the San Antonio 
network further revealed that the use of an additional filter based on consecutive travel times could provide 
increased robustness to the filtering process.  In a hypothetical situation where all vehicles travel at identical 
speeds, two vehicles entering a link in succession would be expected to exit the link in the same order in 
which they entered. Alternatively, if the vehicles travel at different speeds the order of vehicles entering and 
exiting the roadway segment may change as a result of one vehicle overtaking the other. If, however, the 
difference in vehicle travel times are assumed to vary within 2 to 3 standard deviations an additional criteria 
can be set in the algorithm to ensure that longer travel times do not exceed a user-defined difference relative 
to other vehicles that travel the roadway section during the same time interval. This criteria is set based on 
the fact that both vehicles are traveling on the same link at about the same time and thus should be subject to 
similar traffic conditions.  For instance, consider a vehicle B that is detected to exit a link a few seconds after 
a vehicle A.  If the vehicle B has been detected to enter the link 5 minutes earlier than the vehicle A, then 
there is a reasonable indication that this vehicle may have stopped along the link and thus its observed travel 
time should be eliminated from the dataset used to estimate the average link travel time. 

Within the filtering algorithm, Equation 16 is used to verify the validity of observed travel times on 
a given link based on the sequence of vehicle entry and exit times from the link.  The equation indicates that 
any observed travel time from a vehicle i that is exiting a link will be considered as valid provided that this 
vehicle does not experience a travel time that is significantly different from a similar vehicle within the same 
time frame.  Similar to the determination of the basic data validity range, the allowed variation in link entry 
time is set to correspond to the estimated shorter travel time plus the confidence interval of two standard 
deviations.   
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where: 
SttAB k = Set of valid recorded travel times from reader A to reader B in kth interval, 
tAi  = Time at which vehicle i was detected at reader A (s), 
tBi  = Time at which vehicle i was detected at reader B (s), and 
(σ2

s ttAB
)k = Expected standard deviation of travel times in kth interval, as defined in Equation 6 (s). 

5. EVALUATION OF PROPOSED FILTERING ALGORITHM 

To evaluate the proposed filtering algorithm, the algorithm defined by Equations 8, 9, 10, 11, 14, 15 and 16 
was applied to two series of AVI readings from the San Antonio network.  The first series comprised 
observations that were made on I-35 South between Ritiman Rd. (AVI station 45) and Walzden Rd. (Station 
44) over a period of 10 consecutive days in June of 1998.  This freeway link is the same as the one that was 
used to illustrate the development of the algorithm.  The second series of observations consist of travel time 
readings that were made along the Bandera Rd. arterial between Mainland Rd. (AVI station 21) and Huebner 
Rr. (AVI station 20) over the same ten weekdays as the freeway observations.  The selected freeway link is 
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3.96 km (2.46 mi) in length and has a posted speed limit of 96 km/h (60 mph) that yields a nominal free-flow 
link travel time of 2.45 minutes.  On the other hand, the arterial link is 1.26 km (0.78 mi) in length, crosses 4 
signalized intersections, and has a posted speed limit of 72 km/h (45 mph) that yields a free-flow link travel 
time of 1.04 minutes. 

Figure 11 and Figure 12 illustrate the results of the application of the filtering algorithm to the two 
datasets described above.  For both the freeway and arterial links it is first observed that the filtering 
algorithm was able to correctly track all major changes in traffic conditions.  While incorrect acceptance or 
rejections of observations are occasionally made, such errors are relatively few in number and do not appear 
to significantly affect the operation of the algorithm and the identification of the underlying trends.  In 
particular, it is observed in Figure 11 that the filtering algorithm is able to respond to sudden increases and 
decreases in observed travel times, unlike the TransGuide filtering algorithm that was described earlier.  This 
ability to track sudden changes is particularly apparent in the freeway data of June 19, which clearly 
illustrates the impact on travel time of a severe congestion that was probably caused by an incident.   

In addition to demonstrating the ability to track general changes in travel times, the results of both 
figures clearly show the ability of the algorithm to follow the general fluctuation in observed travel times 
despite relatively low sampling rates.  As indicated in each figure, the total number of AVI readings made 
throughout an entire day varied between 519 and 718 for the freeway link, and between 144 and 174 for the 
arterial link.  While the freeway link provided significantly more readings than the arterial link, both links 
are considered to operate at significantly low sampling rates.  For the arterial link, in particular, the low 
sampling rates result in large intervals with no observations.  In most of the diagrams of Figure 12, it is for 
instance observed that there are typically very few readings before 6:00 A.M. or after 10:00 P.M.  Between 
6:00 A.M. and 10:00 P.M. it is also not uncommon to observe periods of more than 15 minutes without any 
travel time observation.  It can also be observed that validity intervals are much wider than the case of the 
freeway link.  This wider search range is the combined result of the low number of observations on the 
arterial and frictions elements such as traffic signal operations, traffic entering or leaving the arterial at mid-
blocks, and pedestrians.  However, while the low sampling rate and presence of large gaps in travel time 
observations increases the difficulty of identifying general trends in travel times or determining whether 
travel times that are observed after a large gap truly represent existing traffic conditions, it is observed that 
the algorithm is generally able to correctly identify valid and invalid travel times along the test segment. 

The scenarios of both Figures 11 and 12 may be considered as extreme, as AVI systems are not 
typically intended for estimating travel times in such conditions.  However, the application results clearly 
demonstrate the robustness of the proposed AVI data filtering algorithm.  In particular, it can be expected 
that application of the algorithm to networks with greater AVI penetration rates would improve the 
algorithm’s reliability and accuracy.  Typically, an increase in sampling rate would translate into a reduction 
in the number of periods without observations and a greater number of observations within each sampling 
interval.  Such an increase in the number of observations would then improve the accuracy of the estimated 
average travel time and travel time variance within each interval, and would improve the ability of the 
algorithm to correctly identify trends while also reducing the impacts of incorrectly rejecting or accepting 
travel time observations. 

6. CONCLUSIONS AND RECOMMENDATIONS 

The paper described an algorithm that was developed for estimating reliable and accurate average link travel 
times from AVI travel time information.  The proposed algorithm overcomes a number of shortcomings of 
existing algorithms by effectively dealing with steady state and transient traffic conditions and to function 
with low levels of AVI tag market penetration.  Specifically, the algorithms constructs dynamic data validity 
windows for which travel time observations within each sampling interval are considered valid. The 
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algorithm adjusts the size of the validity window by considering the number of observations in the current 
and previous sampling intervals, as well as the number of consecutive observations outside the validity 
range.  Finally, applications of the algorithm to two datasets of observed link travel times from the San 
Antonio AVI system clearly demonstrates the ability of the algorithm to correctly track fluctuations in 
average roadway travel times, whether these fluctuations occur slowly or rapidly.  In particular, application 
to an arterial link demonstrates the ability of the algorithm to operate with very low sampling rates. 

While the proposed filtering algorithm has only been applied to freeway and arterial links from San 
Antonio, its applicability is not restricted to this network.  First, while it is assumed that a lognormal 
distribution best represents freeway and arterial link travel times, modifying this feature is simple given the 
modular nature of the approach.  Second, the algorithm is applicable to roadway links of any length since the 
filtering process uses patterns of observed travel times on each link to determine valid and invalid 
observations.  Finally, the ability of the algorithm to operate with relatively low sampling rates provides 
flexibility in considering both low and high levels of AVI market penetration.   

Despite the successful application of the proposed algorithm to two distinct datasets of AVI 
readings, further tests are still required to determine the sensitivity of the results of the algorithm to the 
various calibrated filtering parameters.  In particular, investigations should be made regarding the impacts of 
varying the value of the smoothing parameter α in the travel time smoothing process, the size of the 
sampling interval, the rates with which the travel time validity range is increased in the presence of low 
sampling rates, and the number of consecutive data points outside the validity range defining a trend in 
increasing or decreasing travel times.  Finally, the use of historical data and travel time information from 
adjacent links should also be investigated.  In particular, such information could provide additional 
validation criterion or means to provide travel time information when AVI observations are not available. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44) 
Tuesday, June 11, 1998
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FIGURE 1  Application of TransGuide filtering algorithm to travel times from the San Antonio 

AVI system. 
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  Record  Travel  Vehicle 
 Time    Time    Identification  
 (sec)   (sec)  
 
 21140    130    hcM8xP6XVUwEx2aSyEY3xYe8.A/UDe2/.& 
 21237    152    WznaAk388r6P4unJalV4roEZ1QKTkS1lc& 
 21237    152    8mC.MR0n1RkvVsVIBC8.52b5sDyqTC6a.& 
 21319    149    biHpNjlNy1ESMau95g4/2ctCIgDhIK5WM& 
 21380    139    EvrGROk8IZok.byVdFG41Eq6WYN437.o2& 
 21813    148    HEa4HwS9Nds5ZhNFiWScqcq6WYN437.o2& 
 21889    151    66dbKdkE05cXabH.w3gVg2QNz//G3fR..& 
 21889    151    66dbKdkE05cXabH.w3gVg2QNz//G3fR..& 
 21922    141    HEa4HwS9NdsUQm3aBU7VH2q6WYN437.o2& 
 21963    141    OrkXSd9DnqIXIe1nJCpZYIZnMtIcX06bY& 
 22458    153    Q8s6g8nitRMyhN35PDcFNoq6WYN437.o2& 
 22461    154    CRTo307bu5cHNjcr8fQ4ektCIgDhIK5WM& 
 22605    151    8tZH/pmWIRwgDxtkEQmi4Ye8.A/UDe2/.& 
 22721    149    y4pysYXpBJYWzN.TyQZJGkZnMtIcX06bY& 
 22731    147    VkoFZ3U9d8EJ/CU448fsWUZnMtIcX06bY& 
 22914    138    5CU1a4iKk7kbYziidhCFwce8.A/UDe2/.& 
 22920    143    9AJBA5t.e4Is.j0/2oSyAwq6WYN437.o2& 
 22940    163    jfR6MHwpihQs/W1p.Gmm/gZnMtIcX06bY& 
 22954    152    Q8s6g8nitRM4D5He1K9LOkq6WYN437.o2& 
 22997    150    U9m0ONwzo5ILczCPg.Ga8ke8.A/UDe2/.& 
 23275    171    JsGE9T4JBLoJOs1OZT0Z5YZnMtIcX06bY& 
 23568   1205    EvrGROk8IZoZ/pjVFPCeOEq6WYN437.o2& 
 23568    148    EvrGROk8IZoZ/pjVFPCeOEq6WYN437.o2& 
 23883    246    NhJsU4sN6grvBUI7MqQXIZnMtIcX06bY& 
 24553    350    9AJBA5t.e4IrPyI/CGG.y6q6WYN437.o2& 
 

FIGURE 2  Example of duplicate AVI records. 
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FIGURE 3  Value of smoothing factor α as a function of number of observations in sampling 

interval and sensitivity parameter β. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 4  Application of filtering algorithm to dataset of Figure 1 using observed interval average 

travel times to determine the limits of the basic search widow. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 5  Application of filtering algorithm to dataset of Figure 1 using expected interval average 

travel times to determine the limits of the basic search widow. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 6  Application of filtering algorithm with two standard deviations as validity window on 

dataset of Figure 1. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 7  Application of filtering algorithm with three standard deviations as validity window on 

dataset of Figure 1. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 8  Example of expanded search beyond limits of validity window. 
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I-35 South, Walzden Rd. (Station #45) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 9  Application of filtering algorithm with expanded search algorithm                                  

on dataset of Figure 1. 
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I-35 North, Seguin Rd. (Station #43) to Ritiman Rd. (Station #44)
Tuesday, June 11, 1998
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FIGURE 10  Impact of low sampling search limits on the operation of the filtering algorithm. 



Dion and Rakha  29 

 

M on, June 22, 1998
567 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Average Travel Time
Upper/Lower Validity Bounds
Accepted Observation
Rejected Observation

Tue, June 23, 1998
539 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Wed, June 24, 1998
674 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Thu, June 25, 1998
681 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Fri, June 26, 1998
718 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24
T ime o f  day (ho urs)

M on, June 15, 1998
519 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

Tue, June 16, 1998
534 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

Wed, June 17, 1998
702 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

Thu, June 18, 1998
707 Readings

0
2
4
6
8

10
12
14
16

0 2 4 6 8 10 12 14 16 18 20 22 24

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

Fri, June 19, 1998
644 Readings

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24
T ime o f  day (ho urs)

Tr
av

el
 ti

m
e 

(m
in

ut
es

)

N OT E: 
D if ferent  Scale

 
FIGURE 11  Sample application to a freeway roadway segment with β  = 0.2, λ = 3, βσ = 0.05.  
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FIGURE 12  Sample application to an arterial roadway segment with β  = 0.3, λ = 2, βσ = 0.05. 

 


